技术需求项目表

项目需求名 称	铝材减薄 (主材减耗)
相关工作基础	数字化工厂,完整的研发团队,瓶罐(38 螺纹口-211-330)外观设计专利,铝材下料装置、杯输送线导向装置等多项专利。
项目需求简 介	从节约成本出发,工艺和功能都须满足要求,过程复杂 繁琐,同时把制罐细节做到极致,智能化生产线须形成一套 成熟完善的制罐体系。
难题需求简介	1、重新设计罐体及相应模具,在原有的基础上保低制 爱成本,减少材料损耗污染; 2、新罐体保证产品合格,力学指标达标; 3、确保产品的良品率。
拟达到的技 术、经济指 标	年节约成本 300 万元。
拟解决需求 的方法、路 径	 "与高校院所合作 "同意对外发布需求,征集专家解决 "购买相关技术 ☑委托研发 ☑自主研发 "技术改造(设备、研发生产条件) "共建中试、熟化基地"其他

项目需求 名称	在线检测检验
相关工作 基础	数字化工厂,完整的研发团队,瓶罐(38螺纹口-211-3 30)外观设计专利,铝材下料装置、杯输送线导向装置等多项专利。
项目需求 简介	人工检测检验耗时耗力,且例罐线生产这度很高,有些项目只能做到抽检,不能做到100%检测。项目需求个别检验项目100%检测,相关项目在线自动检测时无须人工检验。
难题需求 简介	1、在生产线高速生产时保证产品检测的有效性和准确性; 2、检测数据的保存、读取及超标提醒。(和生产设备的实时通讯)
拟达到的 技术、经 济指标	隔离率减低 50%。
拟解决需 求的方 法、路径	 "与高校院所合作"同意对外发布需求,征集专家解决 "购买相关技术 ☑委托研发 ☑自主研发 "技术改造(设备、研发生产条件)"共建中试、熟化基地"其他"

项目需求名 称	新罐型研发(螺口瓶、皇冠盖瓶)
相关工作基础	数字化工厂,完整的研发团队,瓶罐(38 螺纹口-211-330)外观设计专利,铝材下料装置、杯输送线导向装置等多项专利。
项目需求简 介	根据市场需求,研发更多的瓶型,如 28 螺口瓶、皇冠盖瓶等,罐身亦可按需求做相应的外型。
难题需求简 介	1、设计罐体及相应模具,; 2、保证产品合格,力学指标达标; 3、功能满足使用要求、外型满足客户要求; 4、确保产品的良品率。
拟达到的技 术、经济指 标	罐制、模具设计技术改进准化问题,获得相关专利 2 项。
拟解决需求 的方法、路 径	 "与高校院所合作"同意对外发布需求,征集专家解决 "购买相关技术 ☑委托研发 ☑自主研发 "技术改造(设备、研发生产条件)" "共建中试、熟化基地"其他

项目需求 名称	设备状态监控
相关工作 基础	数字化工厂,完整的研发团队,瓶罐(38 螺纹口-211-3 30)外观设计专利,铝材下料装置、杯输送线导向装置等多项 专利。
项目需求 简介	设备状态可通过相关日检、月检、年检来判断其运行情况,月检、年检项目存在一定的空档期,因此设备维护存在一定的风险.制罐线 24 小时运行,某台设备的故障就可能导致整线的停机。
难题需求 简介	1、设备状态的监控及标准制定; 2、设备异常的提醒。
拟达到的 技术、经 济指标	设备故障率减低 2%。
	"与高校院所合作"同意对外发布需求,征集专家解
拟解决需 求的方 法、路径	决 "购买相关技术

项目需求 名称	罐制、模具设计技术改进
相关工作 基础	数字化工厂,完整的研发团队,瓶罐(38螺纹口-211-3 30)外观设计专利,铝材下料装置、杯输送线导向装置等多项专利。
项目需求 简介	超薄罐体制罐技术研发。从节约成本出发,超薄罐体实现美观实用环保于一体,过程复杂繁琐,同时把制罐细节做到极致,智能化生产线须形成一套成熟完善的制罐体系。
难题需求 简介	1、模具加工制造超薄罐体,在原有的基础上降低制造成本,减少材料损耗污染; 2、制作变薄罐体之后保证产品合格,力学指标达标; 3、产品质检工序靠后,无法确保产品的良品率。
拟达到的 技术、经 济指标	罐制、模具设计技术改进准化问题,获得相关专利2项。
拟解决需 求的方 法、路径	 "与高校院所合作"同意对外发布需求,征集专家解决 决"购买相关技术 ☑委托研发 ☑自主研发 ☑技术改造(设备、研发生产条件) "共建中试、熟化基地"其他

7E H #	
项目需 求名称	多机具通用动力平台开发
相关工作基础	公司在 50 马力铰接轮式拖拉机的成功开发基础上积累了
	大量的研发经验,产品获得国家授权专利20多项,并建立了核
	心零部件传动系的加工、装配、试验的相关生产线,技术人员、
	生产线工人的素质得到了大量的提升,公司的相关基础设施建
	议可以满足后续产品研发及量产的需求。
	丘陵山地的农机化发展水平与平原地区相比发展较晚,在
	发展规模和速度上与平原地区差距巨大,发展极度不平衡。因
	此,国家在每年的中央一号文件以及国发〔2018〕42号《国务
	院关于加快推进农业机械化和农机装备产业转型升级的指导
	意见》指出,"以科技创新、机制创新、政策创新为动力,补
	短板、强弱项、促协调,推动农机装备产业向高质量发展转型,
	推动农业机械化向全程全面高质高效升级,走出一条中国特色
	农业机械化发展道路,为实现农业农村现代化提供有力支撑。"
	结合我国实际情况,解决我国农机化率较低的丘陵山地区
┃ ┃ 项目需	域无机可用的尴尬局面,开发出适应丘陵山地田块小和作物多
求简介	样性的机型是我们提出开发多机具通用动力平台的目的。
	丘陵山地多动力平台具有如下特点:1、中小型化,功率以
	80 马力及以下为宜; 2、采用前后四轮驱动, 具有更大的牵引
	力、较高的通过性能和稳定性能;3、采用铰接形式。由前、后
	机体相对偏折实现转向和全轮着地。轴距适合、转向半径小、
	轮距较窄,有良好的牵引性能和转向机动性。更为重要的是在
	采用铰接形式时,车辆的转向关节不易受到泥沙污染,可靠性
	高。4、可正反向驾驶。采用旋转座椅,实现整机的正反向驾驶
	切换,拓展整机的使用范围,提高作业的效率,提高人员操作
	的舒适性。5、带后置动力输出。后置 PTO 动力输出方便各机具
	的动力连接,满足机具的机械、液压、气力、电力等的需求。

	为达到上述要求,需要对整机的关键点的可靠性、还有电、液、气系统的匹配进行设计和测试,确保整车达到质量要求。
难题需求简介	1、高性价比、高可靠性的变量泵、多路阀、电磁阀、气控阀的供应商; 2、用于机身姿态调整和地面仿形切割的油缸行程控制传感器、仿形装置、油缸工作协调控制微处理器及相关软件供应商或解决方案; 3、耐腐蚀无油润滑轴承的解决方案; 4、拖拉机外露件的防腐处理方案;达到国四排放的高性价比的发动机尾气处理方案。
拟达到 的技 术、络 济指标	技术指标: 1、整机发动机配套最大功率 80 马力,达到国四排放标准; 2、整车长宽高: 7000X2500X3000(毫米); 3、平台能挂接三种以上的机具,快速拆换时间小于 30 分钟; 4、整机驱动形式: 前后四轮驱动; 5、能双向驾驶、6、整机最小转向圆直径小于等于 13000(毫米); 7、整机可靠性 250 小时。8、参与完成编写《多机具通用动力平台》专项鉴定大纲编制,制订企业标准或相关团体标准; 9、申请相关专利 2 项。 经济指标: 1、建成年产能力 1000 台套的多机具通用动力平台生产加工线; 2、新增销售收入 1 亿元,利税 200 万元。
拟解决 需求的 方法、 路径	R 与高校院所合作

项目需 求名称	室内易感区域移动式空地两栖杀菌装备研制
相关工 作基础	技术准备阶段
项目需 求简介	当前突发新型冠状病毒来势汹汹,人际互感,空气传播是病毒的主要传播途径。此外起中东呼吸综合征、埃博拉病毒等重大传染性疾病在世界各地不断爆发。疫情防控的关键是阻断或最大程度减少病原体在人际间传播。本项目针对机场、火车站等重大传染性疾病易感的公共区域的消毒与监控需求展开,通过采用移动式空地两栖机器人对敏感环境进行非接触性无人作业,提高消杀的效率,阻断病毒传播,大幅降低防疫工作人员受感染的风险。
难题需 求简介	1、蜂窝和无线自组网相融的多模通信方案的设计。 2. 基于激光雷达与惯导测量单元数据融合的实时定位与地 图构建(SLAM)技术。
拟的、术济组	技术指标: 1. 完成蜂窝和无线自组网相融的多模通信方案的设计,解决移动智能机器人协同作业的问题(每组至少 4 个机器人); 2. 完成基于激光雷达与惯导测量单元数据融合的实时定位与地图构建(SLAM)技术的研发,解决室内弱光照,无GPS 未知环拟达到的技术、经境中的定位和导航问题。 3. 基于UVC 紫外光多径反射聚能空气杀菌方法研究,解决传统吊装式紫外灯杀菌效率低,时间长,对环境影响大,需要预置线路,存在死角等问题。有效紫外 56%,输出比例 11%,功率密度 16W/cm。 4. 预计形成技术成果 4 件,完成室内易感区域移动式空地两栖杀菌装备的研制。 经济指标: 预计产业化后可新增产值 400 万元,新增利税 120 万元。
拟解决 需求的 方法、 路径	R 与高校院所合作 □同意对外发布需求,征集专家解决 □购买相关技术 □委托研发 R 自主研发 □技术改造(设备、研发生产条件) □共建中试、熟化基地 □其他

项目需 求名称	室内自主导航紫外线聚能消毒机器人
相关工作基础	正在进行技术准备和市场调研
项目需 求简介	当前突发新型冠状病毒来势汹汹,人际互感,空气传播是病毒的主要传播途径。除了对公共区域进行消杀外,还要考虑对住宅等非公共相对封闭和狭小空间进行消杀。本项目针对住宅等非公共且相对封闭和狭小空间的消毒需求展开,通过室内自主导航+紫外线聚能消毒的方式对局部空气进行无人化、非接触式紫外线杀菌消毒。方便操作,降低消杀过程中人员感染的机率,同时可提高消杀的效率,避免漏杀和消杀死角
难题需求简介	1、创新聚能紫外线及换气设备,提高消毒杀菌效率,解决了室内有人环境下的紫外线消毒难题,照射剂量可达 130mJ/cm²,大于 126mJ/cm²的国家标准; 2、通过自主导航算法,实现基于激光雷达的室内地图绘制。自动回冲、自动避障、多点导航、路径规划等功能,移动速度达到 0.2~0.3m/s,雷达距离达 8m,分辨率<2cm,采样频率 800 0 次/s。
拟达到 的技 术、经 济指标	1. 完成室内自主导航紫外线聚能消毒机器人的研制;完成 自主导航算法设计;申请发明专利1件,软件著作权3件。 2、预计实现产业化后可新增销售收入200万元,新增利税 35万元。
拟解决 需求的 方法、 路径	R 与高校院所合作 □同意对外发布需求,征集专家解决 □购买相关技术 □委托研发 R 自主研发 □技术改造(设备、研发生产条件) □共建中试、熟化基地 □其他

来源: 北海市科学技术局